
Master Thesis
in Quantitative Finance

Performance Analysis of
Structured Financial Instruments
for Different Risk Profiles under

Various Market Scenarios

Jonas Neubacher
Wandsbeker Chaussee 130, 22089 Hamburg

stu205246@mail.uni-kiel.de
Matriculation number: 1113546

Submission date: 5. April 2019

Christian-Albrechts-Universität zu Kiel
Faculty of Business, Economics and Social Sciences
Chair of Public Economics
Supervisor: Prof. Dr. Dr. Ulrich Schmidt
Second Supervisor: Prof. Dr. Menusch Khadjavi



Contents

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.1. Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1.1. Call Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.1.2. Put Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.3. Barrier Options . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.4. Put-Call Parity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.1. Normal Distribution of Returns . . . . . . . . . . . . . . . . . . . 6
2.2.2. Log-Normal Distribution of Stock Prices . . . . . . . . . . . . . . 6

2.3. Itô Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3.1. Wiener Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3.2. General Brownian Motion . . . . . . . . . . . . . . . . . . . . . . 8
2.3.3. Itô Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.4. Itô Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.5. Geometric Brownian Motion . . . . . . . . . . . . . . . . . . . . 10

2.4. Monte Carlo Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5. Value at Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6. Probability of Success . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.7. Sharpe Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3. Structured Financial Instruments . . . . . . . . . . . . . . . . . . . . . . 17
3.1. Reverse Convertible Bond . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.1. Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.2. Evaluation by Duplication . . . . . . . . . . . . . . . . . . . . . . 21

3.2. Bonus Cap Certificate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.1. Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.2. Evaluation by Duplication . . . . . . . . . . . . . . . . . . . . . . 25

4. Performance of Different Investment Strategies . . . . . . . . . . . . . 26
4.1. Risk Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2. Market Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3. Benchmark Versus Reverse Convertible Bond . . . . . . . . . . . . . . . 30

4.3.1. Optimistic Scenario . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3.2. Moderate Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3.3. Pessimistic Scenario . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3.4. Stress Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

i



4.4. Benchmark Versus Bonus Cap Certificate . . . . . . . . . . . . . . . . . 33
4.4.1. Optimistic Scenario . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.4.2. Moderate Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.4.3. Pessimistic Scenario . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.4.4. Stress Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

A. Parameters of Certificates . . . . . . . . . . . . . . . . . . . . . . . . . . 40

B. Histograms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
B.1. Histograms of Simulated RCB Returns . . . . . . . . . . . . . . . . . . . 41
B.2. Histograms of Simulated CBC Returns . . . . . . . . . . . . . . . . . . . 45

ii



List of Figures

1. Risk-reward Profile Long Call and Short Call . . . . . . . . . . . . . . . . 3

2. Risk-reward Profile Long Put and Short Put . . . . . . . . . . . . . . . . . 4

3. Monte Carlo Simulation of Geometric Brownian Motion . . . . . . . . . . 12

4. Payout Profile of Reverse Convertible Bond . . . . . . . . . . . . . . . . . 19

5. Payout Profile of Bonus Cap Certificate . . . . . . . . . . . . . . . . . . . 23

6. Histogram of Simulated Returns: RCB Risk Category 3, Optimistic Scenario 41

8. Histogram of Simulated Returns: RCB Risk Category 3, Pessimistic
Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

7. Histogram of Simulated Returns: RCB Risk Category 3, Moderate Scenario 42

9. Histogram of Simulated Returns: RCB Risk Category 3, Stress Scenario . . 42

10. Histogram of Simulated Returns: RCB Risk Category 4, Optimistic Scenario 43

11. Histogram of Simulated Returns: RCB Risk Category 4, Moderate Scenario 43

12. Histogram of Simulated Returns: RCB Risk Category 4, Pessimistic
Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

13. Histogram of Simulated Returns: RCB Risk Category 4, Stress Scenario . . 44

14. Histogram of Simulated Returns: CBC Risk Category 4, Optimistic Scenario 45

15. Histogram of Simulated Returns: CBC Risk Category 4, Moderate Scenario 45

16. Histogram of Simulated Returns: CBC Risk Category 4, Pessimistic
Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

17. Histogram of Simulated Returns: CBC Risk Category 4, Stress Scenario . . 46

18. Histogram of Simulated Returns: CBC Risk Category 5, Optimistic Scenario 47

19. Histogram of Simulated Returns: CBC Risk Category 5, Moderate Scenario 47

20. Histogram of Simulated Returns: CBC Risk Category 5, Pessimistic
Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

21. Histogram of Simulated Returns: CBC Risk Category 5, Stress Scenario . . 48

iii



List of Tables

1. European Call and Synthetic European Call . . . . . . . . . . . . . . . . . 5

2. Optimistic Scenario RCB . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3. Moderate Scenario RCB . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4. Pessimistic Scenario RCB . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5. Stress Scenario RCB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6. Optimistic Scenario CBC . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

7. Moderate Scenario CBC . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

8. Pessimistic Scenario CBC . . . . . . . . . . . . . . . . . . . . . . . . . . 34

9. Stress Scenario CBC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

10. Parameters of the Reverse Convertible Bonds . . . . . . . . . . . . . . . . 40

11. Parameters of the Capped Bonus Certificates . . . . . . . . . . . . . . . . 40

iv



List of Abbreviations

T Expiration time

t Current time

K Strike price, exercise price

r f Risk-free rate

µ Mean

σ Volatility, standard deviation

S0 Price of underlying asset in t = 0

ST Price of underlying asset at maturity

St Current price of underlying asset

W Wiener Process

B Barrier

a Subscription ratio

C0 Value of European call option in t = 0

P0 Value of European put option in t = 0

BL Bonus level of Capped Bonus Certificate

CAP Upper limit of Capped Bonus Certificate

CBC Capped Bonus Certificate

ES50 Euro Stoxx 50

GBM Geometric Brownian Motion

NV Nominal value

PoS Probability of Success

PRIIP Packaged Retail and Insurance-based Investment Product

RCB Reverse Convertible Bond

SDE Stochastic Differential Equation

SR Sharpe Ratio

VaR Value at Risk

VEV VaR-Equivalent Volatility

v



1. Introduction

The persistent low-interest environment triggers investors to look for more profitable in-
vestments than plain bank deposits. Considering the large number of existing investment
products in the capital market, it is not easy for retail investors to find a tailored financial
product which reflects their individual risk profile and their expected returns in a proper
way.

As an opportunity, investors can consider investing in structured financial products such
as certificates. According to the German Derivatives Association (DDV 2013), certifi-
cates provide profit opportunities in all market situations and suitable products for every
risk propensity. The differentiated risk and payout profiles can be realized by combining
fundamental securities, such as derivatives, equities, indices, bonds, currencies or com-
modities. Attractive risk-opportunity profiles and access to complex asset classes are thus
made possible.

This study shows that an investment in a reverse convertible bond or in a capped bonus
certificate can facilitate the alignment of the investor’s risk appetite and that a positive
return can be realized with a high probability.

Due to the complexity and non-transparency of certificates, these products are not easily
understandable even for experienced retail investors. This study aims to enhance trans-
parency regarding the return potentials and the related loss risks associated with structured
financial products, in particular of reverse convertible bonds and capped bonus certifi-
cates, in various market scenarios of the underlying asset.

For this purpose, the mathematical framework of Itô calculus and Monte Carlo simula-
tions are used as fundamental tools. The simulated performances consider different risk
profiles in accordance with the EU-PRIIPs-Regulation (2017) of potential investors as
well. The Euro Stoxx 50 index is taken as the relevant underlying asset for the structured
products under consideration. The historical data required for the Monte Carlo simu-
lations and the determination of the Value at Risk equivalent volatility are taken from
Ariva.de.

The following chapter 2 explains the basic fundamentals of mathematical finance and
risk management used for the performance analysis of the certificates. This includes op-
tions theory, Itô calculus, Monte Carlo method and Value at Risk. Chapter 3 deals with
the structure and the basic functioning of reverse convertible bonds and capped bonus
certificates. Furthermore, a method to evaluate the payout profiles of these complex prod-
ucts is provided. In chapter 4, the design of the empirical study is outlined, including the
explanation of the different risk profiles and market scenarios considered. In addition, the
results of the performance analysis are illustrated and discussed.
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2. Methodology

In order to analyze the performance of structured financial products, in particular reverse
convertible bonds and bonus cap certificates, sound knowledge of mathematical finance
and stochastic processes is required.

In this chapter, we will discuss some essential background and methodology for the
understanding of structured financial products and this study in particular. The payout
profile of certificates can be replicated by a combination of the underlying asset and one
or more optional components. Therefore, the fundamental technical functionality of stan-
dard options will be characterized beforehand.

2.1. Options

An option is a contract which grants the holder the right to buy or sell an underlying asset
at a predetermined price (Seydel 2017: 1). Options, which can be exercised only at the
expiry date T , are called European options (Asiri 2018: 5). If an exercise of the option is
possible anytime during its lifetime, the option is called American option. In this study,
only European options are relevant for the discussion since all investigated certificates can
solely be exercised at maturity.

The risk profile according to DDV (2017: 14) is asymmetric since the buyer (long
position) of an option has the right to choose (not the obligation) whether she exercises
the option or not, whereas the seller (short position) has to accept a potential exercise
in any case. Therefore, they belong to conditional forward transactions. In case of the
exercise of a call option, the writer has to deliver the underlying asset for the strike price
K (DDV 2017: 14). If a put option is exercised, the writer has to buy the underlying at the
amount of the strike price. According to Seydel (2017: 1), the writer will compensate the
loss risks through appropriate hedging strategies. The underlying asset of an option can
be a stock, an index, a commodity or a currency.

Basically, we can distinguish four different risk-reward profiles for options on which
every more complex option combination is built on: buying/selling a call and buying/selling
a put (Schmidt 2014: 194). The opportunities and risks depend on the strike price and the
break-even point.

2.1.1. Call Options

The first strategy is to buy a call (long call). In this case, the buyer is convinced that
the price of the underlying will rise (Bloss 2017: 261). She acquires the right to buy the
underlying asset via a call option. The loss potential is limited to the option premium,
though she receives the chance to participate in unlimited share price increases, which is
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Figure 1: Risk-reward Profile Long Call and Short Call. Source: Own diagram based on
DDV (2017: 16).

illustrated on the left-hand side of Figure 1. If the market price of the underlying settles
below the strike at maturity, the buyer will not exercise the call option (Kallsen 2015:
54). If the share price is above the strike, the payoff is the difference of both (Sengputa
2004: 309). Following Kallsen (2015: 54), the value of a call option can be depicted as a
random variable X , which represents the payoff at time T depending on the share price at
maturity and the strike price.

X = (ST −K)+ = max(ST −K,0) (1)

A second strategy for an investor is to sell a call (short call). In this case, she reckons on
a constant or slightly decreasing price scenario and wants to generate additional income
through the option premium (Bloss 2017: 261). The maximum profit is limited in the
amount of the received option premium. The risk is characterized by rising market prices
since the underlying has to be delivered at the strike price. A large price increase leads
into the loss area (Schmidt 2014: 196). In accordance with Bloss (2017: 262), this risk
can be minimized by holding the underlying asset in the portfolio prior to the conclusion
of the forward transaction.

2.1.2. Put Options

With regard to put options an investor also has two possible strategies. By buying a put
(long put), the investor expects a significant fall in the market price. With this strategy,
she speculates actively against falling prices and attempts to profit from the downward
market trend, or she just intends to hedge against a decline of the share price because she

3



Figure 2: Risk-reward Profile Long Put and Short Put. Source: Own diagram based on
DDV (2017: 17).

has the stock in her portfolio (Bloss 2017: 262). On the one hand, the maximum loss is
limited to the paid option premium, which is illustrated in Figure 2 on the left-hand side.
On the other hand, the profit is bounded to a maximum, since every asset can only fall to
a value of zero.

The value of a put option at maturity T can be likewise expressed as a random variable
X , depending on the share price and the strike price.

X = (K−ST )
+ = max(K−ST ,0) (2)

In case of selling a put (short put), the investor anticipates constant or slightly increasing
prices in the specific asset market (Schmidt 2014: 196). The option premium depicts the
maximum profit. The loss is limited to the strike at maximum, since under circumstances
of falling prices she has to buy the underlying asset at the fixed strike price. Therefore,
the investor is exposed to the risk of a partial or a complete loss of the underlying.

2.1.3. Barrier Options

Options, for which the contract expires if the underlying share price reached a certain level
(barrier), are called barrier options (Irle 2012: 174). The payout of barrier options depends
not only on S(T ) but on the entire path S(t)t∈[0,T ] of the underlying asset. Therefore, they
are path dependent and belong to exotic type of options. Depending on the position of the
barrier in relation to the underlying price, a distinction is made between up-options and
down-options (Löhr and Cremers 2007: 21).

As an example, consider a European down-and-out-put with duration T , exercise price

4



Table 1: European Call and Synthetic European Call. Source: Müller (2016: 6).

K and barrier B.
X = (K−ST )

+
1∀St>B (3)

The equation (3) demonstrates the payout at maturity of this specific barrier option.
Following Irle (2012: 174), this put expires if the price of the underlying reaches or falls
below the level B. If the threshold is not touched or fallen short of, the payoff equals that
of a classical put option.

2.1.4. Put-Call Parity

In modeling the payoff profile and the price of structured financial instruments, the put-
call parity is useful. According to Müller (2016: 6), the payoff structure of a European
long call with exercise price K can be replicated by a portfolio containing a European
long put with the same strike, a long position of the underlying asset with current price S0

and a short position of a bond with nominal value K. The payoff at maturity T (value at
expiration) will be the same for both investments, which is outlined in Table 1.

C0 = P0 +S0−Ke−rT (4)

Since the European long call and the portfolio (synthetic European call) provide the
same payoff at time T , they should have the same fair price at time t = 0 in an arbitrage-
free market (Müller 2016: 6). This relation is called put-call parity and is demonstrated
in equation (4). According to Asiri (2018: 7), an arbitrage opportunity is a riskless op-
portunity to earn money resulting from mispriced securities.
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2.2. Preliminaries

In this chapter some basic essentials of mathematics are described for a better understand-
ing of Itô calculus and of some general assumptions in financial mathematics.

In this context, theorems of probability theory regarding the normal distribution and the
log-normal distribution play a decisive role.

2.2.1. Normal Distribution of Returns

A standard assumption in financial engineering is that returns over a small period of time
are normally distributed and returns over two non-overlapping periods are independent
(Hull 2018: 313).

A continuous random variable X is normally or Gaussian distributed with mean µ and
variance σ2 (notation: X ∼ N(µ,σ2)) if the probability density function is defined by
(Asiri 2018: 2):

f (x) =
1

σ
√

2π
e
−(x−µ)2

2σ2 . (5)

The random variable X can be expressed as

X = µ +σZ, (6)

where Z is a standard normal variable with Z ∼ N(0,1).
The assumption of normally distributed returns underlies the notable Black-Scholes

model for option valuation since the possible future stock prices at the end of a period
are expected to be log-normal distributed (Black and Scholes 1973: 640). It is not a
perfect representation of the reality, but nevertheless, it is an acceptable approximation in
a practical setting according to Schmidt (2014: 48). In real life, very small and very large
changes in the asset price occur more frequently than what would be anticipated by the
normal distribution.

2.2.2. Log-Normal Distribution of Stock Prices

From log-normally distributed share prices follows that the percentage changes are nor-
mally distributed, since the logarithm of a log-normally distributed random variable is
normally distributed (Schmidt 2014: 49).

This is also in accordance with the assumptions of the Black-Scholes model (Black and
Scholes 1973: 640). Random variables drawn from this distribution can not take negative
values, which is in line with the reality and an important feature in modeling stock prices.

A continuous, positive random variable Y is log-normally distributed with parameters
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µ and σ (notation Y ∼ LN(µ,σ2)) if the transformed variable

ln(Y ) = µ +σZ (7)

is normally distributed with standard normal variable Z (Asiri 2018: 3).

2.3. Itô Calculus

For the performance analysis of structured products, assumptions about the fundamental
price behavior of assets are crucial to simulate future outcomes. The price development
of the underlying asset can be seen as an uncertain course of a random variable through
time (Hull 2018: 313).

In accordance with Iacus (2011: 104), Bloss (2017: 31) and Hull (2018: 313), financial
time series can be imagined as stochastic processes, for which only the present value of
the variable is relevant for predicting the future. Historical data and further background
information are not needed to forecast the future evolution of the variable. Therefore, it is
assumed that share prices can be described adequately and comprehensively via a Markov
process (Bloss 2017: 31).

2.3.1. Wiener Process

A continuous-time stochastic process belongs to the group of random variables X(t),
which are defined for continuous time t, for example in 0 ≤ t ≤ T (Seydel 2017: 27).
X(t) or Xt is the realization of the stochastic process.

Following Seydel (2017: 27), there are two particular characteristics which can con-
stitute a stochastic process. First, it can be a Gauß process, where X(t) is normally dis-
tributed for every t. Second, it can be a Markov process, where only the current value of
X is relevant for the future behavior since all information of the past is already included
in the current value.

A standard Brownian motion or Wiener process is both, a Gauß and a Markov process.
The variable follows a process that can be described by a standard normal distribution. It
can be defined as a continuous stochastic process {W (t),0 ≤ t ≤ T} with the following
properties according to Asiri (2018: 25), Glasserman (2004: 79), and Iacus (2011: 104):

(i) W (0) = 0

(ii) the mapping t 7→W (t) is a continuous function on [0,T ]

(iii) the increments {W (t1)−W (t0),W (t2)−W (t1), . . . ,W (tn)−W (tn−1)} are indepen-
dent for any n and any 0≤ t0 < t1 < · · ·< tn ≤ T
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(iv) W (t)−W (s)∼ N(0, t− s) for any 0≤ s < t ≤ T

(v) W (t)∼ N(0, t) for 0 < t ≤ T

Therefore, the Wiener process W (t) describes the evolution of a normally distributed
random variable through time with drift rate 0 and diffusion coefficient 1.

2.3.2. General Brownian Motion

For general constant parameters µ and σ > 0, the process X(t) is called Brownian mo-
tion with drift µ and diffusion coefficient σ2 (Glasserman 2004: 80). Since X(t)−µt

σ
is a

standard Brownian motion, we can write X as:

X(t) = µt +σW (t). (8)

It follows from the characteristics of a Wiener process that X(t)∼ N(µt,σ2t). Further-
more, X solves the stochastic differential equation (SDE):

dX(t) = µdt +σdW (t). (9)

Consequently, variable X follows a path with deterministic expected change µ per unit of
time and with additional stochastic movement (diffusion) σdW (t) on the covered distance
(Bloss 2017: 33).

The differential equation (9) does not make sense in ordinary calculus, since it is math-
ematically not well defined, but following Kallsen (2017a: 20) it can be interpreted as an
integral equation of the form

X(t) = X(0)+
∫ t

0
µds+

∫ t

0
σdW (s), (10)

where X(0) is an arbitrary constant for the value of X at time t = 0. Processes of this
form are called Itô processes. As well as the standard Brownian motion, the process X

has continuous sample paths and independent increments (Glasserman 2004: 80). Each
increment X(t)−X(s) is normally distributed with mean

E(X(t)−X(s)) =
∫ t

s
µdu (11)

and variance
Var(X(t)−X(s)) =

∫ t

s
σ

2du. (12)
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2.3.3. Itô Process

The framework of both, the Wiener process and the general Brownian motion, can be
described by means of an Itô process. Modeling financial time series with ordinary cal-
culus is not appropriate, because stochastic fluctuations are neglected (Seydel 2017: 32).
Instead, Itô processes form the base for stochastic calculus and the modeling of share
prices.

An Itô process can be written as the SDE

X(t) = X(0)+
∫ t

0
a(X(s),s)ds+

∫ t

0
b(X(s),s)dW (s) (13)

or symbolically as
dX(t) = a(X(t), t)dt +b(X(t), t)dW (t). (14)

The change of a variable X(t) is composed of a Wiener process dW (t) and the functions a

and b, which depend on X(t) and t (Hull 2018: 311). Therefore, the drift and the variance
rate of X can be a function of both, X itself and the time.

A Wiener process itself is a particular Itô process with a = 0 and b = 1 (Seydel 2017:
33). Analogously to a Brownian motion, the variable X(t) has a drift a and a variance of
b2.

2.3.4. Itô Lemma

In stochastic calculus, the rules for differentiation and integration differ from those in ordi-
nary calculus (Asiri 2018: 32). To make calculations with an Itô-integral, it requires suit-
able calculation rules. A fundamental foundation of stochastic processes is Itô’s lemma,
with which one can derive specific solutions for SDEs. Asiri (2018: 32) emphasizes, that
for stochastic variables it is as important as a Taylor series is for deterministic variables.

Let X(t) be a stochastic process as in equation (14), and suppose f (x, t) is a function
with continuous ∂ f

∂x , ∂ 2 f
∂x2 and ∂ f

∂ t . Then, f (X(t), t) also follows an Itô process with the
same Wiener process W (t). According to Seydel (2017: 41) and Kallsen (2017a: 21),
Itô’s lemma reads as:

d f (X(t), t) =
(

∂ f
∂ t

+
∂ f
∂x

a+
1
2

∂ 2 f
∂x2 b2

)
dt +

∂ f
∂x

bdW (t) (15)

or
d f (X(t)) =

(
f ′(X(t))a+

1
2

f ′′(X(t))b2
)

dt + f ′(X(t))bdW (t) (16)

if the function f depends only on X(t). The entire proof of Itô’s formula is outlined in
Arnold (1973: 108).
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2.3.5. Geometric Brownian Motion

The general Brownian motion implies a constant expected drift, as well as a constant
variance rate (Bloss 2017: 35). Thus, if the underlying variable of the process should
describe the evolution of a share price in time, a constant absolute change of the price
would be presumed in the case of the general Brownian motion.

However, in reality, investors request a percentage return which is independent of the
share price level. As a consequence, the assumption of constant price changes must be
replaced through the assumption of constant expected percentage returns, which are de-
fined as the quotient of the expected price change and the share price. It follows that at
any given time point t, the drift of the share price S is expected to be µS(t). The constant
parameter µ corresponds to the expected (annualized) return of the stock.

The percentage change (return) dS
S of a stock in the time interval dt consists of a de-

terministic drift part µdt and the stochastic fluctuations σdW (Seydel 2017: 34). The
geometric Brownian motion (GBM) is defined by the stochastic differential equation:

dS(t)
S(t)

= µdt +σdW (t) (17)

or
dS(t) = µS(t)dt +σS(t)dW (t) (18)

with W a standard Brownian motion. This SDE is linear in x = S, with a(S, t) = µS and
b(S, t) = σS. As stochastic integral equation, the GBM can be expressed as:

S(t)−S(0) =
∫ t

0
µS(s)ds+

∫ t

0
σS(s)dW (s). (19)

The parameter µ is the annualized mean and σ represents the volatility of the stock price
(Glasserman 2004: 4). According to Schmidt (2014: 47), the volatility is a measure for
the average yearly percentage stock price changes around their mean. Consequently, the
volatility is the annualized standard deviation of the returns. The conversion from daily
to yearly standard deviation is feasible using the formula

σyearly = σdaily
√

number of periods = σdaily
√

256. (20)

To express the evolution of stock prices via geometric Brownian motion constitutes the
reference model on which Black and Scholes (1973) and Merton (1973) established their
assumptions for the valuation of derivatives and their theory in option pricing. In financial
mathematics, the GBM is the most fundamental model for the value of financial assets.

The solution of the SDE in equation (18) can be derived by means of Itô’s lemma and
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results in
S(t) = S(0)exp

((
µ− 1

2
σ

2
)

t +σW (t)
)

(21)

or generally, if u < t then

S(t) = S(u)exp
((

µ− 1
2

σ
2
)
(t−u)+σ

(
W (t)−W (u)

))
. (22)

S(0) is the initial price of the stock and is assumed to be known.
Following Grüne (2011: 32), consider the SDE dZ(t) = adt +bdW (t), with a≡ 0 and

b≡ 1, the Itô formula can be applied on the function Y (t) = f (Z(t), t) with

f (x, t) = S(0)exp
((

µ− 1
2

σ
2
)

t +σx
)
. (23)

The partial derivatives yield

∂ f (x, t)
∂ t

= f (x, t)(µ− 1
2

σ
2),

∂ f (x, t)
∂x

= f (x, t)σ ,
∂ 2 f (x, t)

∂x2 = f (x, t)σ2. (24)

Since Y (t) = f (Z(t), t) = S(t) (because Z(t) =W (t)), it follows from Itô lemma that

dS(t) = dY (t) =
(

S(t)
(

µ− 1
2

σ
2
)
+

1
2

σ
2S(t)

)
dt +S(t)σdW (t) (25)

= µS(t)dt +σS(t)dW (t). (26)

Consequently, equation (21) is indeed the solution for the stochastic differential equation
in (18).

The logarithm of the stock price depends linearly on a normally distributed Wiener
process and for this reason, it is itself normally distributed (Glasserman 2004: 4). The
logical conclusion from this is that the stock price has a log-normal distribution. There-
fore, if S∼ GBM(µ,σ2) we have

S(t)
S(0)

∼ LN
((

µ− 1
2

σ
2
)

t,σ2t
)

(27)

with

E(S(t)) = S(0)eµt (28)

and Var(S(t)) = S(0)2e2µt
(

eσ2t−1
)

(29)
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Figure 3: Monte-Carlo Simulation of Geometric Brownian Motion, with S(0) = 100, µ =
0.1, σ = 0.4, N = 256 and 50 paths. Source: Own diagram.

and
ln(S(t))− ln(S(0))∼ N

((
µ− 1

2
σ

2
)

t,σ2t
)

(30)

or
ln(S(t))∼ N

(
ln(S(0))+

(
µ− 1

2
σ

2
)

t,σ2t
)
. (31)

It can thus be concluded that a stochastic process S(t) is a GBM if the logarithm of this
process is a general Brownian motion with initial value ln(S(0)), a ≡ (µ − 1

2σ2) and
b≡ σ . Hence, a GBM is just an exponentiated Brownian motion (Glasserman 2004: 94).

Whereas an ordinary Brownian motion can also take negative values, a log-normally
distributed variable can only take values between 0 and ∞, which is why the process is
ideal for the distribution assumption for future share prices. Negative values for stock
prices or other limited liability assets would be an undesirable feature in a predictive
model (Glasserman 2004: 93).

Furthermore, for the GBM the percentage changes S(t2)−S(t1)
S(t1)

, S(t3)−S(t2)
S(t2)

, . . . , S(tn)−S(tn−1)
S(tn−1)

are independent for t1 < t2 < · · ·< tn, rather than the absolute changes. In modeling assets
prices these properties are essential to get reasonable values.

According to Glasserman (2004: 94), one can utilize the feature that the increments
of a Wiener process W are independent and normally distributed, such that a recursive
procedure is appropriate when it comes to the simulation of stock prices S at time 0 =
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t0 < t1 < · · ·< tn. The formula for the path simulation of the asset price is given by

S(ti+1) = S(ti)exp
((

µ− 1
2

σ
2
)
(ti+1− ti)+σ

√
ti+1− tiZi+1

)
, (32)

i = 0,1, . . . ,n−1

with Z1,Z2, . . . ,Zn independent standard normal random variables, i.e. Z ∼ N(0,1).
Figure 3 illustrates an example simulation according to equation (32) of 50 feasible

future share price paths within one trading year (256 trading days) and with starting value
S(0) = 100. The underlying asset is expected to have an average return of µ = 0.1 and a
volatility of σ = 0.4. Because of the positive drift term, the asset price at time T = 256
is most likely above the initial value of S(0) = 100. Only in a few cases, the price falls
gravely below the starting value.

2.4. Monte Carlo Simulation

The Monte Carlo simulation is a frequently used method in finance and economics to find
an approximate numerical solution with the help of probability theory for analytically
unsolvable tasks (Bloss 2017: 252). For example, it can be used to simulate paths of a
stochastic process to illustrate the development of potential future outcomes.

By generating a very large quantity of random variables, using a pseudorandom number
generator on the computer, the objective function can be calculated and the estimator can
be determined.

In financial engineering, the future probability distribution of the underlying variable
is of importance. It can be calculated by employing a Monte Carlo simulation, dividing a
time interval (e.g. one year) into many small time steps (e.g. 256 trading days), and then
randomly generating potential paths for the variable (Hull 2018: 313). The distribution
of the underlying variable can then be estimated from the distribution of the simulated
outcomes. According to Bloss (2017: 252), the Monte Carlo method can approximately
determine the optimum of this specific objective function.

Following the steps of Kallsen (2017a: 47) and Iacus (2011: 159), suppose we are
interested in the evaluation of expectations in the form V = E( f (X)) numerically, where
X denotes a random variable and f some known function. It is assumed that we can
simulate X on the computer, i.e. it is possible to draw N realizations of independent and
identically distributed random variables X1, . . . ,XN from the given distribution of X . As
an approximation for the true value of V we then can use the empirical mean

V̂N =
1
N

N

∑
n=1

f (Xn). (33)
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V̂N is an unbiased estimator for the expectation V = E( f (X)) and according to the law of
large numbers it converges to V = E( f (X)) for N→ ∞. Due to the central limit theorem,
the Monte Carlo estimator V̂N is asymptotic normally distributed such that

V̂N
d−→ N

(
E( f (X)),

1
N

Var( f (X))

)
, (34)

which implies that the standard deviation of the estimator is

σ(V̂N) =

√
Var(V̂N) =

1√
N

σ( f (X)). (35)

Therefore, the simulation has a rate of convergence to the true value of 1√
N

. By increasing
the number of simulations by the factor of four, the error can be halved on average.

The property of asymptotic normality can be used to determine a confidence interval
for the Monte Carlo estimator. With probability of 95%, the true value V lies within the
interval V̂N−1.96

√
σ̂2

N( f (X))

N
,V̂N +1.96

√
σ̂2

N( f (X))

N

 , (36)

where σ̂2
N( f (X)) is the approximation of the variance of f (X). Since even the expec-

tation of f (X) is unknown, the variance is more than likely also unknown. It can be
approximated by the sample variance, which is an unbiased and consistent estimator of
the variance:

σ̂
2
N( f (X)) =

1
N−1

N

∑
n=1

(
f (Xn)−V̂N

)2
. (37)

To conclude, with the Monte Carlo method we can get an arbitrarily precise estimator
of our objective function by simulating sufficiently often.

2.5. Value at Risk

The Value at Risk (VaR) is a risk measure which is frequently used in practice to assess
the risk position of a portfolio. In general, it is defined as the absolute loss (or negative
profit) of a portfolio, which is not exceeded in a predefined period of time with a certain
probability (Bloss 2017: 63). In accordance with Christoffersen (2003: 48), the absolute
eVaR for a probability p ∈ (0,1) is defined as

Pr(eLoss > eVaR) = p, (38)
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i.e. the eLoss of the investment will exceed the eVaR with probability p. The percentage
portfolio return at time t can be defined as Rt such that we can write the eLoss as

eLoss =−(Vt+1−Vt) =−Vt×Rt+1 (39)

where Vt is the current market value of the portfolio. By substituting this relationship into
the definition of the absolute eVaR and given the cumulative distribution function of the
profit and loss distribution is continuous, the percentage VaR for level p∈ (0,1) is defined
as

Pr(Rt+1 <VaR) = p, (40)

with
VaR≡−eVaR

Vt
. (41)

Since the true profit and loss distribution of the investment is unknown, an appropriate
estimate for the VaR value is required. Following Kallsen (2017b: 31), the estimate V̂aR

can be determined via
V̂aR := q̂p(FN) := r[p×N]+1:N , (42)

where we use the estimated probability distribution of the returns generated by the Monte
Carlo method from the previous chapter. In this context, the function FN : R 7→ [0,1] is
the empirical distribution function of the simulated returns r1,r2, . . . ,rN defined by

FN(x) =
number of sample elements≤ x

N
=

1
N

N

∑
k=1

1[rk,∞)(x) (43)

and q̂p(FN) is the empirical p-quantile of FN for p ∈ (0,1) (Kallsen 2017b: 25). The
ordered random variables r1,r2, . . . ,rN are denoted by r1:N ≤ r2:N ≤ ·· · ≤ rN:N and [x] :=
max{n ∈ N : n≤ x}.

Therefore, the Monte Carlo estimate V̂aR is the [p×N]+ 1-largest observation of the
ordered return sample or, in other words, the empirical p-quantile.

2.6. Probability of Success

Despite its simplicity, the probability of success is a crucial figure for the comparison
and assessment of different risk positions. It is defined as the probability that a specific
investment strategy results in a positive return in the future, i.e.

PoS(Rt+1) = Pr(Rt+1 > 0). (44)

The true distribution function of future returns is unknown, such that we have to rely
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on the simulated returns r1,r2, . . . ,rN of the Monte Carlo simulation. The estimated prob-
ability of success P̂oS(Rt+1) can be calculated by means of the sample returns and it is
defined by

P̂oS(Rt+1) :=
1
N

N

∑
n=1

1rn>0. (45)

2.7. Sharpe Ratio

The Sharpe Ratio is an economic figure which demonstrates the relationship between the
excess return and the included risk of an investment. It is defined as the expected return
in excess of the risk-free interest rate per unit of risk, where the standard deviation of
the return is taken as the risk measure. In general, it is a method for determining the
risk-adjusted return, that can be used to compare different investment strategies.

Following Sharpe (1966: 122), it can be calculated with the formula

SR =
E(Ri)− r f

σ(Ri)
, (46)

where E(Ri) is the expected return of portfolio i and σ(Ri) depicts its volatility. It is
assumed that an investor can lend and borrow any desired amount of money at the given
risk-free rate r f . Therefore, an investor will always prefer the investment with the highest
Sharpe Ratio.

For the estimated Sharpe Ratio ŜR we will again utilize the simulated return values
r1,r2, . . . ,rN from the Monte Carlo simulation and calculate the sample mean

µ̂i =
1
N

N

∑
n=1

rn,i (47)

and the sample standard deviation

σ̂i =

√
1

N−1

N

∑
n=1

(rn,i− µ̂i)2, (48)

which can be substituted in
ŜR =

µ̂i− r f

σ̂i
. (49)
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3. Structured Financial Instruments

In the last decades, there was a shift of investors demand from typical investment products
towards financial instruments with more complex payoff structures than stocks, bonds
or plain vanilla options (Szymanowska et al. 2009: 2). Generally, structured financial
instruments are designed to facilitate access to such intricate positions in these elementary
markets.

Structured products have the basic feature in common that they are all built through
a combination of fundamental financial securities, forming complex cash flow patterns
combined from fixed-income securities, equities and/or derivatives (Hernández et al. 2008:
3; Meyer 2013: 9). Even features of exotic options, such as long and short positions in
barrier options, can serve as the basic framework for the payoff profile of these securities.
The underlying asset can be a share, a basket of shares, an index, a commodity, a currency
or a fond (Guidolin and Pedio 2015: 1; Löhr and Cremers 2007: 15).

According to Hernández et al. (2008: 4), an important benefit of combining several
separate financial instruments into one single product is that transaction costs can be re-
duced. If the underlying asset is e.g. an index, a direct investment in the underlying is
accompanied with a manual duplication of the index by buying all its components with
prescribed weighting scheme (Meyer 2013: 10). In comparison to the direct investment
in the underlying components, investing in the structured product would be consequently
much more efficient.

Furthermore, the market can be completed by offering a variety of different payoff
structures to meet the needs of the customers. It is feasible to depict highly customized
risk-return profiles with differentiated payout at maturity defined through exact formulas
published by the issuers (Guidolin and Pedio 2015: 1; Meyer 2013: 10). The differ-
entiated risk and payout profiles of structured products are attainable by combining an
underlying asset with one or more optional components (DDV 2017: 10). Those compo-
nents react differently to changes in one or more parameters. Hence, the investor can gain
in every market situation, depending on the design of the product.

Normally, retail investors have no or only limited access to exchanges of derivative fi-
nancial instruments through their broker, especially in the case of over-the-counter (OTC)
traded options, which are often an element of structured products (Löhr and Cremers
2007: 15; Meyer 2013: 10). Through the purchase of a structured product, the retail
investor can receive access to such sophisticated trading strategies, besides the common
investments in stocks, funds, or bonds. As the share prices of structured products are re-
duced to a relatively low level, smaller investments are possible. Therefore, the primary
buyers of structured financial instruments, according to Meyer (2013: 10), are retail cus-
tomers with insufficient funds, knowledge, and access opportunities to compose complex
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security combinations themselves.
There is a wide range of different product types and features in the market for struc-

tured instruments, which enables investors to find the appropriate product reflecting their
desired risk-return profile (Meyer 2013: 11). Thus, there are products issued with various
basic parameters and maturities. Issuers assume the function of a market-maker and pro-
vide permanently buying and selling prices for their products, in order to ensure sufficient
liquidity in the secondary market (Löhr and Cremers 2007: 15; Burth et al. 2001: 31).

Equally noteworthy are potential downsides of structured instruments. Pursuant to
Meyer (2013: 11), the investors carry no voting rights on matters of the corporate policy
and usually, they have to waive any claims on occurring dividend payments if the under-
lying is a stock. The issuers often withhold dividends to finance special attributes of their
products or they adjust product prices to the expectation of future dividend payments.

Certificates, like reverse convertible bonds (RCBs) and capped bonus certificates (CBCs),
pertain to those derivatives and structured financial instruments. A certificate is a security
that has the same legal form as a bond, so that potential payment difficulties of the issuer
play an important role during the selection process of the certificate (Löhr and Cremers
2007: 15). In the case of a bankruptcy of the product supplier, the investor can suffer a
total loss. Hence, the creditworthiness of the issuer is a crucial factor when it comes to
picking the optimal certificate.

In the following subsections, the structure and the evaluation of the payment flow of
reverse convertible bonds and capped bonus certificates will be discussed. The universal
approach, which is often utilized to handle relatively complex financial constructions,
especially for the valuation and the analysis of structured products, is called “evaluation
by duplication” (Löhr and Cremers 2007: 16). The foundation of this approach is that
structured financial securities exhibit an identical value and the same risk if they result in
an identical cash flow pattern given constant surrounding conditions.

3.1. Reverse Convertible Bond

Reverse convertible bonds are bonds with a coupon payment which is located consider-
ably above the current market interest rate (Wilkens and Scholz 2000: 171).

In exchange, the issuer has the right of decision at maturity to either disburse the nom-
inal value of the security or to deliver a predefined quantity of shares of the underlying
stock (Szymanowska et al. 2009: 1). In case of index-linked bonds, i.e. RCBs with an
index as the underlying asset, generally a cash settlement in the amount of the value of
the underlying index at maturity takes place (DDV 2017: 62).

Particularly, in times with low interest rates in the bond markets and high volatilities
in the stock markets, RCBs constitute an attractive investment since they provide high

18



Figure 4: Payout Profile of Reverse Convertible Bond. Source: Own diagram based on
DDV (2017: 65).

interest coupons. At expiry date, the issuer has to pay the interest coupon in any case,
regardless of the performance of the underlying.

3.1.1. Structure

Reverse convertible bonds are regularly issued by large banks under the legal form of
a bond with a duration mostly between 3-15 months (Löhr and Cremers 2007: 33). In
contrast to stocks, they are issued with a nominal value and not as individual pieces (DDV
2017: 63). The smallest tradable denomination is generally located at a par value of 1000
Euro. Accordingly, the pricing takes place as a percentage quotation with regard to the
par value, and not as the pricing of a share as Euro per item.

The investor of an RCB buys the high interest rate in exchange for the risk that she
gets back a specified number of shares or the cash value of these shares, instead of the
initial par value of the investment. The number of shares obtained by the investor defines
the subscription ratio, which is equal to the notional amount divided by the strike price
(Guidolin and Pedio 2015: 6).

If the price of the underlying asset is below the agreed critical value at maturity, the
issuer will use the shares as amortization payment. This critical value has the same func-
tion as the strike price K from chapter 2. The disbursed cash amount or the value of the
tendered shares is then calculated from the subscription ratio multiplied by the current
price (Löhr and Cremers 2007: 34). If the price of the underlying share is listed at or over
the particular exercise price at the expiry date, the issuer will pay back the bond at face
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value in cash.
The exercise price is obtained by calculating

K =
nominal value of RCB

subscription ratio
=

NV
a

. (50)

Generally, it is set under the present share price at the issue date. The difference between
the actual share price and the strike price serves thus as a risk buffer.

Figure 4 illustrates an exemplary payout profile of an RCB in comparison to a direct
investment in the underlying stock. The maximum return of the RCB is ensured if the un-
derlying is traded above the exercise price at the maturity date T . However, the maximum
return is limited to the amount of the coupon payment, even if the underlying realizes
immense price gains in a bull market. As long as the underlying share price does not rise
above the outperformance point, the return of the RCB is higher compared to the direct
investment.

The price at the maturity date at which the direct investment has a yield advantage in
comparison to the RCB can be calculated via

outperformance point = current share price×
(

1+
Interest rate in %

100

)
(51)

or equally via

outperformance point =
nominal value of RCB+ coupon payments

number of shares at direct investment
(52)

with
number of shares at direct investment =

nominal value of RCB
current share price

. (53)

Thus, solely in a sustainable bull market the direct investment in the underlying is superior
to the RCB (Löhr and Cremers 2007: 37).

The critical value of the underlying at which the RCB reaches the loss region can be
calculated through the computation of the break-even point. Following Löhr and Cremers
(2007: 34), it is defined as

break-even point =
nominal value of RCB− coupon payments

subscription ratio
. (54)

This means that the investor will make a loss if the price of the underlying is located
below the break-even point at maturity, since the risk buffer of the coupon payments is
then exhausted. Hence, the risk of an investment in an RCB is characterized by sharply
declining prices of the underlying asset.

20



The risk of loss is not bounded. In the case of a bankruptcy of the company, which has
issued the underlying asset, the investor will suffer a total loss. Nevertheless, the negative
return will not account for 100% of the investment, since the investor has received an
above average interest payment during the period. Therefore, the losses of an RCB are
cushioned through the obtained coupon payments, in comparison to the direct investment
in the underlying, but the losses can exceed the interest incomes in general (DDV 2017:
62).

Another risk of an RCB is that investors can not benefit from price increases of the
underlying above the exercise price, compared to the direct investment, which leads to
foregone profits. Likewise, the investor is not entitled to receive dividends in case of
holding an RCB and has to forgo potential dividend payments of the underlying, which
arise within the investment period (DDV 2017: 62).

This structured product is particularly suitable for security-conscious investors, who
want to reduce the risk of buying a stock and anticipate a sideways-moving, slightly de-
clining or slightly rising market development (Löhr and Cremers 2007: 37; Wilkens and
Scholz 2000: 173). Because of the high interest rate, investing in an RCB is less risky
than a direct investment in the underlying asset, but usually riskier than an ordinary bond
investment (Szymanowska et al. 2009: 3). The variation of the underlying defines the
riskiness of the RCB and the level of the coupon rate.

Investors can express their individual risk appetite and their return expectation by
choosing a customized RCB with regard to the position of the exercise price in relation
to the current share price and the running time. The lower the exercise price of the RCB,
the smaller is the interest coupon and the maximal return. The return potential generally
increases with the duration time.

3.1.2. Evaluation by Duplication

The final payout at the expiry date depends on the evolution of the underlying and can be
expressed as

RCBT =

NV, if ST ≥ K

aST , if ST < K
(55)

For the valuation and the simulation of potential future returns of an RCB investment,
it is necessary to decompose the payout profile into separate elements. Due to the fixed
term of this product, the embedded derivatives are of European type.

Based on the implied right of decision of the issuer regarding the repayment form, the
cash flow profile of an RCB following Löhr and Cremers (2007: 38) can be represented
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as

RCBT = min(NV,aST ) (56)

=−max(−NV,−aST ) (57)

= NV −max(0,NV −aST ) (58)

= NV −a×max
(

NV
a
−ST ,0

)
. (59)

The payoff profile can be duplicated by holding a zero-coupon bond, which repays the
par value at maturity date T , and selling a put options with strike price NV

a . Therefore,
the payout structure of an RCB can be disassembled in one bond and in one derivative
component. It should be noted that the option premium at time t = 0 and the risk-free
interest payments form the coupon payment. Thus, the above average coupon payment is
financed by the received option premium of the sold option.

Through the put-call parity, a second construction methodology is possible. Hence, the
payout profile also can be decomposed as

RCBT = min(NV,aST ) (60)

= aST +min(NV −aST ,0) (61)

= aST −max(aST −NV,0) (62)

= aST −a×max
(

ST −
NV
a

,0
)
. (63)

The alternative construction yields a combination of a stocks and a sold calls with a strike
price of K = NV

a .
According to DDV (2017: 66), the relative size of the interest rate depends largely on

the expected volatility of the underlying. In the option market, higher premiums are paid
for strong price fluctuations as compared to low price fluctuations. Since an RCB guar-
antees a synthetic put option, a highly volatile underlying asset results in higher offered
coupon rates.

3.2. Bonus Cap Certificate

In general, bonus certificates are a popular structured product for retail investors that
incorporate an exotic option, namely a path-dependent barrier option (Baule and Tallau
2011: 1).

Structured financial retail products, especially with path-dependent structures, record
a growing success since the late 1990s. Though many of those have suffered from the
financial crisis, bonus certificates are still being issued and demanded. Mostly they are
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Figure 5: Payout Profile of Bonus Cap Certificate. Source: Own diagram based on DDV
(2017: 41) and SIX (2018).

sold with an upper cap, leading to the name bonus cap certificates or likewise capped
bonus certificate (CBC) (Hernández et al. 2008: 5).

3.2.1. Structure

An investment in a bonus cap certificate provides an increased repayment in the amount
of the bonus level (BL) at the maturity date if the price of the underlying never touches or
falls below a predefined price barrier (B) during the term. The CAP value determines the
ceiling of the payout. At the issue date (t0), the barrier is set below and the bonus level
above the current share price.

Assuming the barrier has never been reached or breached, the CBC will provide the
bonus level as a minimum return and the CAP as the potential maximum return (Löhr and
Cremers 2007: 51). This is shown in Figure 5 with two horizontal blue lines. Between
the bonus level and the CAP, the investor can participate directly in changes in the share
prices of the underlying asset, whereas the magnitude depends on the design of the CBC
and its parameters. In practice, these two prices are frequently on the same level, such
that the bonus level also depicts the maximum return of the CBC.

As soon as the barrier is crossed or touched once in the investment period, the CBC
loses its bonus function and it then resembles a direct investment in the underlying with
an upper return limit (CAP). Consequently, the investor will participate completely in
potential losses without downward protection and a total loss is possible.

In principle, after the barrier has been hit, the CBC becomes a regular tracker certifi-
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cate with a CAP (Meyer 2013: 18). The payoff profile of a tracker certificate has the same
structure as a direct investment in the underlying asset, with the difference that no divi-
dend payments are made. According to Meyer (2013: 18), tracker certificates are optimal
for underlying assets which are not appropriate for direct investments, such as indices like
the Euro Stoxx 50 or the DAX.

The holder of a CBC has no claim on dividend payments of the underlying, since the
issuer withholds these funds to finance the bonus opportunity (Löhr and Cremers 2007:
52; DDV 2017: 38; Meyer 2013: 18). In exchange, the holder achieves a positive return
if the underlying only moves sideways or even slightly downwards.

The inclusion of an upper limit for the profit (CAP) enables the issuer to define a low-
lying barrier in order to reduce the risk of a barrier hit (DDV 2017: 45). Hence, a product
for more risk-averse investors can be created. In addition, the bonus mechanism for un-
derlying assets which generate no dividend payments can only be financed through a
CAP.

The main risk of an investment in a CBC manifests itself through sharply falling prices
of the underlying and the accompanied expiration of the claim for the bonus payment. In
accordance with Löhr and Cremers (2007: 52), the protection against possible losses and
the probability, that the investor gets at least the bonus payment is higher, the greater the
distance to the barrier. The distance from the price threshold can be calculated through

distance to barrier (in %) =
(

1− barrier
current price of underlying

)
×100. (64)

It is an important variable for the estimation of the incorporated investment risk.
Another important figure is the size of the bonus return, which can be calculated ac-

cording to DDV (2017: 39) by the formula

bonus return =

(
bonus level−purchase price

purchase price

)
× 365

investment period in days
. (65)

Both key figures together are very suitable to evaluate the risks and the chances of a
product, since they move in opposite directions.

In principle, a CBC with a low barrier is less risky than a product with a higher barrier,
however, it is accompanied by a lower bonus payment (DDV 2017: 44). By contrast,
the higher the bonus level is selected, the larger is the bonus return and the smaller the
distance to the safety threshold. The earning potential of a CBC generally increases with
the term, but also the probability of a barrier hit rises. The investor has to weigh up the
trade-off between both factors.
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3.2.2. Evaluation by Duplication

The final payout of a CBC at the expiry date depends on the evolution of the underlying
over the whole period and can be expressed as

CBCT =



CAP, if ST ≥CAP

ST , if BL≤ ST <CAP

BL, if ST ≤ BL ∧ ∀ t : St > B, t ∈ [0,T ]

ST , if ST ≤ BL ∧ ∃ t : St ≤ B, t ∈ [0,T ]

(66)

For the valuation and the simulation of potential future returns of a CBC investment, it
is necessary to decompose the payout profile into separate elements, just the same proce-
dure as for the RCB. Due to the fixed term of this product and the fixed maturity date, the
embedded derivatives are of European type (Löhr and Cremers 2007: 52).

If the barrier has been violated at least once during the period, the bonus mechanism
of the CBC dissipates and the investor receives the payoff profile of the underlying asset
with the CAP as maximum profit.

The cash flow profile of a CBC at maturity time T after decomposing in separate ele-
ments can be represented as

CBCT = max(ST ,BL)1∀ t:St>B +ST 1∃ t:St≤B +min(0,CAP−ST ) (67)

= max(ST ,BL)1∀ t:St>B +ST 1∃ t:St≤B +ST 1∀ t:St>B−ST 1∀ t:St>B (68)

+min(0,CAP−ST )

= max(BL−ST ,0)1∀ t:St>B︸ ︷︷ ︸
down-and-out put

+max(ST ,0)︸ ︷︷ ︸
zero-strike call

−max(ST −CAP,0)︸ ︷︷ ︸
short call

. (69)

Consequently, the payoff profile of a CBC can be duplicated by holding a long position
in a down-and-out put option, a long position in a zero-strike call and a short call on the
underlying security (Baule and Tallau 2011: 5; Löhr and Cremers 2007: 55). A zero-
strike call represents exactly the value of the underlying at maturity through the strike at
zero, if the underlying asset pays no dividends within the term of the certificate. The CAP

mechanism can be implemented by selling a call option with a strike price in the amount
of the CAP (DDV 2017: 45).

The exercise price of the down-and-out put complies with the bonus level of the cer-
tificate, and its barrier defines the barrier of the CBC (DDV 2017: 42). If the investor de-
mands a higher bonus level, she has to pay a higher option premium for the down-and-out
put at the issue date, therefore reducing the risk buffer of the total investment. Whenever
the underlying asset trades above the bonus level at the valuation date, the down-and-out
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put option has no intrinsic value, so that solely the underlying’s share price and the CAP

are relevant for the redemption amount of the CBC. This amount is represented by the
value of the zero-strike call and short call in equation (69).

Provided that the barrier was violated once during the observation period, the down-
and-out put expires immediately and gets worthless. In that case, the redemption amount
depends likewise on the zero-strike call and the short call. Given that the share price of
the underlying trades above the CAP level, the short call will be exercised.

4. Performance of Different Investment Strategies

Certificates have complex structures with different yield potential and various risk pro-
files. Particularly relevant for the investor is the future performance of the structured
product and to what extent it fits her market expectation.

In this chapter, we investigate the performance of reverse convertible bonds and capped
bonus certificates for different risk profiles under various market scenarios in comparison
to benchmark investments. The objective of this study is to analyze how these two certifi-
cate types possibly perform among the changing market developments, considering the
different risk appetites, and which investment generates the greatest possible return under
the risk restrictions.

According to Hommel and Schiereck (2004: 4) and DDV (2013: 1), certificates offer
profit opportunities in all market situations and suitable products for every risk propensity.
By means of a Monte Carlo simulation and a performance analysis of RCBs and CBCs,
it is possible to evaluate this statement and demystify the potential return distribution of
such complex products.

The analysis is based on the same assumptions as the study by Dörer et al. (2017).
Therefore, dividend payments and costs for the capital investment are excluded. A strong
creditworthiness of the certificate issuer is assumed and the risk figures are determined
in conformity with the EU-PRIIPs-Regulation (2017), whereby PRIIPs stands for ‘pack-
aged retail and insurance-based investment products’. Furthermore, it is assumed that the
holding period of each investment is one year with 256 trading days. The Euro Stoxx 50
index is taken as the underlying asset.

As a first step, the risk classes of the benchmark investments are determined in accor-
dance with the EU-PRIIPs-Regulation (2017). In this document, a detailed evaluation of
a PRIIP’s risk is outlined.

The benchmark investments are characterized by a combination of a risky investment
in a tracker certificate based on the Euro Stoxx 50 index (direct investment in the under-
lying) and a risk-free bank deposit. The proportion between the risky and the risk-free
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investment identifies the overall risk figure (market risk measure class from EU-PRIIPs-
Regulation (2017)) of each benchmark investment, which is determined by calculating
the VaR and subsequently the VaR-equivalent volatility (VEV). Thus, the performance
analysis results of a benchmark investment can be compared to an optional certificate
investment that is marked with the same risk class. The risk classes 3, 4, and 5 are partic-
ularly relevant for the study since they correspond to the most commonly issued certificate
investments under consideration.

For the determination of the VEV of the benchmark investments, historical data of the
Euro Stoxx 50 index (ES50) from the last three years (2015-2017) is taken from Ariva.de
(2018). The risk-free investment represents a bank deposit account with an interest rate of
0.2%, which was the average interest rate in 2017 for a bank deposit in Germany (Statista
2018).

The market risk classes for the certificates are taken from the key information docu-
ments (Vontobel 2018a; Vontobel 2018b; Vontobel 2018c; Vontobel 2018d). For the re-
verse convertible bonds, the most important risk classes are 3 and 4. The most frequently
issued capped bonus certificates have a risk class of 4 or 5.

In a second step, 20.000 price paths of the ES50 are simulated via a Monte Carlo sim-
ulation, with the underlying assumption that the index follows a GBM. For each risk
class, four varying market scenarios are considered with different simulation parameters
regarding the expected value and the standard deviation of the underlying. Therefore,
the distribution of the ES50 value at maturity is estimated four times. The corresponding
prices are used to calculate potential yearly returns representing the estimated future dis-
tribution of the return. As a result, for each risk class four estimated distributions of the
yearly return are generated.

For each estimated distribution, the expected return and the standard deviation are cal-
culated. Furthermore, the median, the probability of success, the VaR and the Sharpe
Ratio are determined to analyze the potential future performance of every benchmark
investment.

In case of the alternative certificate investments, the future yearly return distributions
are likewise estimated by Monte Carlo simulations of the underlying and a subsequent
calculation of the payout at maturity considering the evaluation by duplication method
from chapter 3. The returns are the ratio of the difference between the payout values and
the initial capital spendings to the initial capital spendings.

Likewise, for each certificate investment four feasible market scenarios are taken into
account and via the estimated future distribution of the returns the expected returns, the
standard deviations, the medians, the VaRs, the probabilities of success and the Sharpe
Ratios are estimated.

27



4.1. Risk Profiles

There are three types of investors with regard to the risk aversion.
The first risk profile depicts a relatively conservative investor with a risk category of 3 in

accordance with the EU-PRIIPs-Regulation (2017). In case of the benchmark investment,
this type of investor allocates merely 50% of her capital in the risky asset. The other
half she invests into the risk-free bank deposit. For the RCB investment, such an investor
chooses a relatively low coupon product. In general, this risk class is characterized by a
rather risk-averse and conservative behavior. The risk of loss is low.

The second risk profile describes a balanced investor with a risk category of 4. For
the benchmark investment, she invests 75% of her funds in the risky asset and 25% in
the deposit account. With regard to the RCB investment, the investor chooses a higher
coupon product than the conservative investor, therefore takes higher risks. For a CBC
she chooses a product with a bonus level relatively close to the initial reference price. Such
an investor is rather risk-seeking, but the risk of loss is balanced or rather intermediate.

The last risk profile characterizes a profit-oriented investor with a risk category of 5.
She invests 100% of her funds into the risky asset in case of the benchmark investment.
For the CBC investment, she picks a product with high bonus level or high barrier. This
type of investor is strongly risk-seeking and accepts a large risk of loss.

The risk categories for the certificates pursuant to the EU-PRIIPs-Regulation (2017)
are extracted from the key information documents. For the RCBs they are outlined in
Vontobel (2018a) and Vontobel (2018b), respectively, for the CBCs in Vontobel (2018c)
and Vontobel (2018d).

The assignment of the risk categories to the benchmark investments is not that straight-
forward. At this point, only the main steps are exemplified. The methodology of the
market risk evaluation of a PRIIP is explained in the EU-PRIIPs-Regulation (2017) in
detail.

As fundamental data set, the ES50 index values of the past three years (2015-2017) are
extracted from Ariva.de (2018), such that the daily return distribution can be generated. At
first, the 2.75%-VaR in return-space has to be calculated via the Cornish-Fisher expansion
as follows (EU-PRIIPs-Regulation 2017: 16):

VaRreturn-space = σ
√

N
(
−1.96+0.474

µ1√
N
−0.0687

µ2

N
+0.146

µ2
1

N

)
−0.5σ

2N (70)
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N = number of trading periods in the recommended holding period

σ = volatility from the return distribution

µ1 = skew from the return distribution

µ2 = excess kurtosis from the return distribution

With the resulting VaR, the VEV can then be calculated by

V EV =
(√

3.842−2VaRreturn-space−1.96
) 1√

T
, (71)

where T is the length of the recommended holding period in years (it is assumed that
T = 1). An example calculation for the ES50 is provided in ESAs-Joint-Committee (2017:
8).

With the help of a prescribed table, the VEV values can be assigned to specific mar-
ket risk categories, ranging from 1 to 7. Therefore, for every combination of the tracker
certificate and the bank deposit (benchmark investments), an individual risk value is spec-
ified. As mentioned before, exclusively relevant for this study are the risk categories 3-5.

4.2. Market Scenarios

Besides the different degrees of risk aversion, the potential market scenarios in which an
investment in an RCB or in a CBC performs better/worse than a benchmark investment
constitute an essential factor within the performance analysis.

Obviously, there are countless possible future market scenarios of the ES50, depending
on the evolution of the economic and political situation. In this study, four conceivable
market scenarios are considered in order to represent the future performance of the certifi-
cates as precise as possible with the preservation of good manageability. The four selected
market scenarios of the ES50 are distinguished by different parameters for the expected
return and the volatility in the Monte Carlo simulation. For each market scenario, a sepa-
rate Monte Carlo simulation of the underlying is conducted.

In an optimistic scenario, the ES50 evolves with an expected return of 6.5% and volatil-
ity of 7.5%. Hence, it is characterized by a high expected return and low volatility.

The moderate scenario is based on the ES50 parameters of the year 2017, therefore the
index evolves with an expected return of 5.76% and a volatility of 10.29%. It can be seen
as a moderate development.

In a pessimistic scenario, the underlying develops with an expected return of 4.75%
and a volatility of 15%, and thus with a lower expected return and a higher volatility than
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in 2017.
The last scenario is characterized by a turbulent market situation with an expected re-

turn of 3.75% and a volatility of 20% of the ES50, so that large fluctuations can be ex-
pected. Therefore, it depicts a stress scenario with a high volatility and a low expected
return of the underlying.

4.3. Benchmark Versus Reverse Convertible Bond

The first performance analysis concerns the investment in two different reverse convertible
bonds in comparison to the benchmark investments with risk categories 3 and 4. Overall,
the simulation shows that an investment in an RCB results in positive returns with a high
probability regardless of the risk profile and the considered market scenario.

On the one hand, the RCB with risk category 3 ensures a very high probability of
success and a lower loss potential, in comparison to the RCB with risk category 4 in every
scenario. On the other hand, the RCB with risk profile 4 guarantees a higher expected
return, which the investor must buy for a higher risk of loss.

In the optimistic, moderate and pessimistic market scenarios, both reverse convert-
ible bonds perform better than the benchmark investments, indicated by higher success
probabilities, median values, and Sharpe Ratios. In the stress scenario, the benchmark
investments perform slightly better, because of the higher expected returns, Sharpe Ratios
and 1%-VaR values. This result is due to the upper limits of the RCBs returns, whereas
an benchmark investor can participate endless in increasing index values.

However, it must be taken into account that even in the stress scenario, the probabilities
of success and the median values are significantly larger with RCBs as compared to the
benchmark investments. Therefore, an investment in an RCB is optimal for security-
oriented investors who prefer a high success probability over high expected returns. Even
if it comes to a negative market development, the RCB investment achieves a positive
return with a high probability.

4.3.1. Optimistic Scenario

Table 2: Optimistic Scenario RCB. Source: Own research.
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The results of the performance analysis of the RCBs in the optimistic scenario are shown
in Table 2.

In the optimistic scenario, the expected return of the RCB after one year is almost one
percentage point higher for the conservative investor in comparison to the benchmark
investment. The probability of success has a value of 99% in that case, whereas the
benchmark is quoted at a success rate of 80%. With a value of 5.18, the Sharpe Ratio is
more than six times larger, indicating a higher risk-adjusted return.

For the balanced investor, the expected RCB return is even two percentage points
higher. In that risk category, the Sharpe Ratio is more than twice as large as the value
for the benchmark.

4.3.2. Moderate Scenario

Table 3: Moderate Scenario RCB. Source: Own research.

In Table 3, the results for the moderate scenario are depicted.
The conservative investor can anticipate a 0.81 percentage points higher return for the

reverse convertible investment with less volatility in the estimated return distribution if the
ES50 moves like in 2017. In addition, it promises a 25 percentage points higher success
probability and an about three times larger Sharpe Ratio, so that the RCB investment is to
be preferred.

The balanced investor can as well benefit from a larger expected return with less volatil-
ity and from a higher probability of success, although the differences to the figures of the
benchmark are somewhat smaller in this risk category.

31



4.3.3. Pessimistic Scenario

Table 4: Pessimistic Scenario RCB. Source: Own research.

The results for the pessimistic scenario are illustrated in Table 4.
In the pessimistic scenario, the conservative investor who invests in an RCB has a per-

formance advantage in comparison to an RCB investor with risk category 4. Even though
the expected returns for both risk profiles are greater for the benchmark investments, it
has to be taken into account that the mean reacts strongly to the negative outliers.

The median is more robust and meaningful at this point. In the case of the RCB in-
vestments, the median values equal the predefined coupon rates of each product, which
outperform the values of the benchmark investments. Furthermore, the probabilities of
success and the Sharpe Ratios of the RCBs for both risk categories are larger.

4.3.4. Stress Scenario

Table 5: Stress Scenario RCB. Source: Own research.

The results of the stress scenario from Table 5 show a slightly better performance of
the benchmark investments due to the higher volatility of the underlying. The expected
returns of the benchmark investments are larger and the loss amounts in 1% of the cases
are smaller.

Nevertheless, the RCB investments realize higher median values and higher success
probabilities for both risk categories. It is left to the investor whether she sets her priority
to a high expected value or a high probability of success.
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4.4. Benchmark Versus Bonus Cap Certificate

The second performance analysis concerns the investment in two different capped bonus
certificates in comparison to the benchmark investments with risk categories 4 and 5.
The simulation shows that an investment in a CBC results in positive returns with a high
probability as well, regardless of the risk profile and the considered market scenario.

The profit-oriented CBC investor has a higher probability of success in each market
scenario in comparison to the balanced CBC investor. However, she takes a higher risk of
loss, because of the higher purchasing price of the CBC. Especially when it comes to bad
market developments, she has to anticipated larger losses.

As well as with the RCB investments, the capped bonus certificates perform better than
the benchmark investments in the optimistic, the moderate and the pessimistic market sce-
narios, indicated by higher success probabilities, median values, and Sharpe Ratios. The
expected returns and the 1%-VaR values for both CBCs, however, lie below the figures of
the benchmark investments in the pessimistic and the stress scenarios.

In the stress scenario, the benchmark investments perform slightly better, because of the
higher expected returns, Sharpe Ratios, and 1%-VaR values. As with RCB investments,
this result is due to the upper limits of the CBCs returns, whereas a benchmark investor
can participate endless in increasing index values. Once again, it must be taken into
account that even in the stress scenario, the probabilities of success and the median values
are significantly larger of the CBCs than those of the benchmark investments.

4.4.1. Optimistic Scenario

Table 6: Optimistic Scenario CBC. Source: Own research.

The simulation results of the CBCs in the optimistic scenario are depicted in Table 5.
A balanced investor can expect a 3.3 percentage points higher return when investing

in a capped bonus certificate rather than investing in the benchmark. The probability
of success is by almost 18 percentage points higher. In the case of the profit-oriented
investor, the success probability is nearly 100%.
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4.4.2. Moderate Scenario

Table 7: Moderate Scenario CBC. Source: Own research.

The performance results for the moderate scenario from Table 7 show that the expected re-
turn of the balanced CBC investor is 2.44 percentage points larger with a lower volatility.
The probability of success is 20 percentage points higher than the value of the benchmark
asset.

A profit-oriented investor who invests in a CBC can expect a 0.78 percentage points
greater return and a 30 percentage points higher success probability in comparison to the
benchmark investment. In this case, the Sharpe Ratio is more than five times bigger.

4.4.3. Pessimistic Scenario

Table 8: Pessimistic Scenario CBC. Source: Own research.

Table 8 depicts the simulation results for the pessimistic scenario.
The pessimistic scenario for the balanced CBC investor is characterized by a slightly

higher expected return of 0.08 percentage points. However, the median is 5.91 percentage
points larger with a probability of success of nearly 75%. The profit-oriented investor has
a 94% chance of success. The loss amount in 1% of the cases is slightly higher for both
risk classes when investing in the certificate.
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4.4.4. Stress Scenario

Table 9: Stress Scenario CBC. Source: Own research.

The findings for the stress scenario are outlined in Table 9.
In the stress scenario with a high volatility of the underlying, the expected return of

the benchmark asset is more than 2 percentage points higher for both risk classes. The
1%-VaR values are significantly larger for the benchmark investments.

However, the median values are larger for the alternative capped bonus certificate in-
vestments. The investors of both categories can also benefit from high probabilities of
success compared to the benchmark assets.
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5. Conclusion

In the continuing low-interest market environment retail investors have to deal with more
complex and complicated investment products than bonds or bank deposits if they aspire
to obtain interest payments to ensure their old-age insurance. Especially for rather risk-
averse and conservative investors, the question arises which investment opportunity in the
wide product market is compatible with their risk profile and their expected profit chances.

By means of Monte Carlo simulations and the assumption that the Euro Stoxx 50 in-
dex behaves like a geometric Brownian motion, the future performance of representative
RCBs and CBCs could be estimated and compared with the performance of benchmark
investments of the same PRIIP risk category. In this context, reverse convertible bonds and
capped bonus certificates represent an advantageous extension of the investment universe
and are therefore promising alternative investments that should not be underestimated.

The performance analysis in this study has shown that the risk profiles of three differ-
ent retail investors can be depicted by means of RCBs and CBCs, and that even in the
low-interest phase, positive returns can be realized with a high probability. In any of the
four potential market scenarios, the median values and the success probabilities of the
certificate investments are higher in comparison to the figures of the related benchmark
investments. Moreover, the Sharpe Ratios take higher values in the optimistic, the moder-
ate and the pessimistic scenarios for every certificate investment under consideration. For
a sideways-moving development of the underlying asset with merely small fluctuations,
the certificate investments show a significantly better performance.

However, to savor these high probabilities of success, an investor has to accept a lower
expected return in case of a potential pessimistic or stress scenario if she allocates her
funds in a reverse convertible bond. An investor who invests in a capped bonus certificate
has to anticipate a lower expected return solely in the stress scenario, independent of the
risk category. The loss amount in 1% of the cases is larger for the certificate investments
in the arrival of a stress scenario, due to the upper limits of the returns.

Overall, an investment in an RCB or a CBC is optimal for security-oriented investors
who prefer products with easier to predict returns which are rather limited to a specific
area. In addition, the investment objective should lie on a high success probability, rather
than profuse expected returns.

The main contribution of this thesis is to create transparency regarding the chances and
risks of reverse convertible bonds and capped bonus certificates. In conclusion, it can
be stated that RCBs and CBCs represent a meaningful investment opportunity. Investors
can adjust their individual risk appetite and even get a positive return in a possible stress
scenario with a high probability.
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Appendix

A. Parameters of Certificates

Table 10: Parameters of the Reverse Convertible Bonds extracted from the Key Informa-
tion Documents Vontobel (2018a) and Vontobel (2018b).

Table 11: Parameters of the Capped Bonus Certificates extracted from the Key Informa-
tion Documents Vontobel (2018c) and Vontobel (2018d).
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B. Histograms

B.1. Histograms of Simulated RCB Returns

Figure 6: RCB Risk Category 3, Optimistic Scenario. Source: Own diagram.

Figure 8: RCB Risk Category 3, Pessimistic Scenario. Source: Own diagram.

41



Figure 7: RCB Risk Category 3, Moderate Scenario. Source: Own diagram.

Figure 9: RCB Risk Category 3, Stress Scenario. Source: Own diagram.
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Figure 10: RCB Risk Category 4, Optimistic Scenario. Source: Own diagram.

Figure 11: RCB Risk Category 4, Moderate Scenario. Source: Own diagram.
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Figure 12: RCB Risk Category 4, Pessimistic Scenario. Source: Own diagram.

Figure 13: RCB Risk Category 4, Stress Scenario. Source: Own diagram.
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B.2. Histograms of Simulated CBC Returns

Figure 14: CBC Risk Category 4, Optimistic Scenario. Source: Own diagram.

Figure 15: CBC Risk Category 4, Moderate Scenario. Source: Own diagram.
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Figure 16: CBC Risk Category 4, Pessimistic Scenario. Source: Own diagram.

Figure 17: CBC Risk Category 4, Stress Scenario. Source: Own diagram.
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Figure 18: CBC Risk Category 5, Optimistic Scenario. Source: Own diagram.

Figure 19: CBC Risk Category 5, Moderate Scenario. Source: Own diagram.
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Figure 20: CBC Risk Category 5, Pessimistic Scenario. Source: Own diagram.

Figure 21: CBC Risk Category 5, Stress Scenario. Source: Own diagram.
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